NUEVOS DESAFÍOS PARA LA SALUD GLOBAL

EMERGENCIA Y REEMERGENCIA DE PATÓGENOS EN ÁREAS DE INTERFAZ

Autores/as

  • María Marcela Orozco Instituto de Ecología, genética y evolución de Buenos Aires, IEGEBA-CONICET/ FCEN-UBA - Argentina http://orcid.org/0000-0003-1677-4310

Palabras clave:

Ciencias de la Salud

Resumen

En la actualidad, la emergencia y reemergencia de enfermedades se presenta como uno de los mayores desafíos para la salud global significando una importante carga para el bienestar de las personas y para las economías mundiales (Daszak et al., 2000; Yang et al., 2020). Estudios sobre sus orígenes revelan que cerca de un 60% de los patógenos emergentes son zoonóticos y casi un 72% de estos se originan en la fauna silvestre siendo una gran proporción transmitidos por vectores (Jones et al., 2008). Una mirada profunda y minuciosa permite evidenciar que el surgimiento de estas enfermedades es consecuencia de la pérdida de biodiversidad como resultado de alteraciones en la salud de los ecosistemas, y que los cambios ecológicos, conductuales o socioeconómicos que propician su emergencia están vinculados a la degradación ambiental, el avance de las fronteras productivas, la globalización, el comercio de especies silvestres, la resistencia antimicrobiana y el cambio climático (Faust et al., 2018; Kock, 2014; Patz et al., 2004; Plowright et al., 2017). En este contexto, los ambientes de interfaz generados entre humanos y otras especies animales resultan nuevos escenarios de transmisión donde puede ocurrir el salto de un patógeno atravesando las barreras entre especies o “spillover”, mediante la combinación perfecta de múltiples variables (Alexander et al., 2018; Plowright et al., 2017).

Abstract

At present, the emergence and re-emergence of diseases is presented as one of the greatest challenges for global health, representing an important burden for the well-being of people and for world economies (Daszak et al., 2000; Yang et al., 2020). Studies on their origins reveal that about 60% of emerging pathogens are zoonotic and almost 72% of these originate in wildlife, a large proportion being transmitted by vectors (Jones et al., 2008). A deep and meticulous look allows to show that the emergence of these diseases is a consequence of the loss of biodiversity as a result of alterations in the health of ecosystems, and that the ecological, behavioral or socioeconomic changes that lead to their emergence are linked to environmental degradation , the advance of productive frontiers, globalization, wildlife trade, antimicrobial resistance and climate change (Faust et al., 2018; Kock, 2014; Patz et al., 2004; Plowright et al., 2017) . In this context, the interface environments generated between humans and other animal species are new transmission scenarios where the leap of a pathogen can occur crossing the barriers between species or “spillover”, through the perfect combination of multiple variables (Alexander et al. , 2018; Plowright et al., 2017).

Biografía del autor/a

María Marcela Orozco, Instituto de Ecología, genética y evolución de Buenos Aires, IEGEBA-CONICET/ FCEN-UBA - Argentina

Dra. en Ciencias Biológicas de la Universidad de Buenos Aires. Investigadora adjunta en el Instituto de Ecología, genética y evolución de Buenos Aires, IEGEBA-CONICET/ FCEN-UBA marcelaorozco.vet@gmail.com.

Citas

Adetola, O. O. & Adebisi, M. A. (2019). Impacts of Deforestation on the Spread of Mastomys natalensis in Nigeria. World Scientific News, 130(May), 286–296.

Alexander, K. A., Carlson, C. J., Lewis, B. L., Getz, W. M., Marathe, M. V., Eubank, S. G., Sanderson, C. E. & Blackburn, J. K. (2018). The Ecology of Pathogen Spillover and Disease Emergence at the Human-Wildlife-Environment Interface (pp. 267–298). https://doi.org/10.1007/978-3-319-92373-4_8

Anthony, S. J., Johnson, C. K., Greig, D. J., Kramer, S., Che, X., Wells, H., Hicks, A. L., Joly, D. O., Wolfe, N. D., Daszak, P., Karesh, W., Lipkin, W. I., Morse, S. S., Mazet, J. A. K. & Goldstein, T. (2017a). Global patterns in coronavirus diversity. Virus Evolution, 3(1), vex012. https://doi.org/10.1093/ve/vex012

Anthony, S. J., Gilardi, K., Menachery, V. D., Goldstein, T., Ssebide, B., Mbabazi, R., Navarrete-Macias, I., Liang, E., Wells, H., Hicks, A., Petrosov, A., Byarugaba, D. K., Debbink, K., Dinnon, K. H., Scobey, T., Randell, S. H., Yount, B. L., Cranfield, M., Johnson, C. K., … Mazet, J. A. K. (2017b). Further evidence for bats as the evolutionary source of middle east respiratory syndrome coronavirus. MBio, 8(2), 1–13. https://doi.org/10.1128/mBio.00373-17

Assiri, A., McGeer, A., Perl, T. M., Price, C. S., Al Rabeeah, A. A., Cummings, D. A. T., Alabdullatif, Z. N., Assad, M., Almulhim, A., Makhdoom, H., Madani, H., Alhakeem, R., Al-Tawfiq, J. A., Cotten, M., Watson, S. J., Kellam, P., Zumla, A. I. & Memish, Z. A. (2013). Hospital Outbreak of Middle East Respiratory Syndrome Coronavirus. New England Journal of Medicine, 369(5), 407–416. https://doi.org/10.1056/nejmoa1306742

Avert (2020). Global HIV and AIDS statistics | Retrieved December 8, 2020, from https://www.avert.org/global-hiv-and-aids-statistics
Cherry, J. D. & Krogstad, P. (2004). SARS: The first pandemic of the 21st century. Pediatric Research, 56(1), 1–5. https://doi.org/10.1203/01.PDR.0000129184.87042.FC

Chu, D. K. W., Poon, L. L. M., Gomaa, M. M., Shehata, M. M., Perera, R. A. P. M., Zeid, D. A., El Rifay, A. S., Siu, L. Y., Guan, Y., Webby, R. J., Ali, M. A., Peiris, M. & Kayali, G. (2014). MERS coronaviruses in dromedary camels, Egypt. Emerging Infectious Diseases, 20(6), 1049–1053. https://doi.org/10.3201/eid2006.140299
Chua, K. B. (2000). Nipah virus: A recently emergent deadly paramyxovirus. Science, 288(5470), 1432–1435. https://doi.org/10.1126/science.288.5470.1432

Chua, K.B, Chua, B. H. & Wang, C. W. (2002). Anthropogenic deforestation, El Niño and the emergence of Nipah virus in Malaysia. The Malaysian Journal of Pathology, 24(1), 15–21. https://europepmc.org/article/med/16329551

Cui, J., Li, F. & Shi, Z.-L. (2019). Origin and evolution of pathogenic coronaviruses. Nature Reviews Microbiology, 17(3), 181–192. https://doi.org/10.1038/s41579-018-0118-9
Cunningham, A. A., Daszak, P. & Wood, J. L. N. (2017). One health, emerging infectious diseases and wildlife: Two decades of progress? In Philosophical Transactions of the Royal Society B: Biological Sciences (Vol. 372, Issue 1725). Royal Society. https://doi.org/10.1098/rstb.2016.0167
Damas, J., Hughes, G. M., Keough, K. C., Painter, C. A., Persky, N. S., Corbo, M., Hiller, M., Koepfli, K. P., Pfenning, A. R., Zhao, H., Genereux, D. P., Swofford, R., Pollard, K. S., Ryder, O. A., Nweeia, M. T., Lindblad-Toh, K., Teeling, E. C., Karlsson, E. K. & Lewin, H. A. (2020). Broad host range of SARS-CoV-2 predicted by comparative and structural analysis of ACE2 in vertebrates. Proceedings of the National Academy of Sciences of the United States of America, 117(36), 22311–22322. https://doi.org/10.1073/pnas.2010146117
Daszak, P., Cunningham, A. A. & Hyatt, A. D. (2000). Emerging infectious diseases of wildlife - Threats to biodiversity and human health. In Science (Vol. 287, Issue 5452, pp. 443–449). American Association for the Advancement of Science. https://doi.org/10.1126/science.287.5452.443
Daszak, P., Zambrana-Torrelio, C., Bogich, T. L., Fernandez, M., Epstein, J. H., Murray, K. A. & Hamilton, H. (2013). Interdisciplinary approaches to understanding disease emergence: The past, present, and future drivers of Nipah virus emergence. Proceedings of the National Academy of Sciences of the United States of America, 110(SUPPL. 1), 3681–3688. https://doi.org/10.1073/pnas.1201243109
Daubney, R., Hudson, J. R. & Garnham, P. C. (1931). Enzootic hepatitis or rift valley fever. An undescribed virus disease of sheep cattle and man from east africa. The Journal of Pathology and Bacteriology, 34(4), 545–579. https://doi.org/10.1002/path.1700340418
De Liberato, C., Frontoso, R., Magliano, A., Montemaggiori, A., Autorino, G. L., Sala, M., Bosworth, A. & Scicluna, M. T. (2018). Monitoring for the possible introduction of Crimean-Congo haemorrhagic fever virus in Italy based on tick sampling on migratory birds and serological survey of sheep flocks. Preventive Veterinary Medicine, 149, 47–52. https://doi.org/10.1016/j.prevetmed.2017.10.014
Dowell, S. F., Mukunu, R., Ksiazek, T. G., Khan, A. S., Rollin, P. E. & Peters, C. J. (1999). Transmission of Ebola hemorrhagic fever: A study of risk factors in family members, Kikwit, Democratic Republic of the Congo, 1995. Journal of Infectious Diseases, 179(SUPPL. 1). https://doi.org/10.1086/514284
Dudas, G., Carvalho, L. M., Rambaut, A. & Bedford, T. (2018). MERS-CoV spillover at the camel-human interface. ELife, 7. https://doi.org/10.7554/eLife.31257
Estrada-Peña, A., Jameson, L., Medlock, J., Vatansever, Z. & Tishkova, F. (2012). Unraveling the ecological complexities of tick-associated crimean-congo hemorrhagic fever virus transmission: A gap analysis for the western palearctic. In Vector-Borne and Zoonotic Diseases (Vol. 12, Issue 9, pp. 743–752). Vector Borne Zoonotic Dis. https://doi.org/10.1089/vbz.2011.0767
Farrar, J. J. (1999). Nipah-virus encephalitis - Investigation of a new infection. In Lancet (Vol. 354, Issue 9186, pp. 1222–1223). Elsevier Limited. https://doi.org/10.1016/S0140-6736(99)90124-1
Faust, C. L., McCallum, H. I., Bloomfield, L. S. P., Gottdenker, N. L., Gillespie, T. R., Torney, C. J., Dobson, A. P. & Plowright, R. K. (2018). Pathogen spillover during land conversion. In Ecology Letters (Vol. 21, Issue 4, pp. 471–483). Blackwell Publishing Ltd. https://doi.org/10.1111/ele.12904
Freuling, C. M., Breithaupt, A., Müller, T., Sehl, J., Balkema-Buschmann, A., Rissmann, M., Klein, A., Wylezich, C., Höper, D., Wernike, K., Aebischer, A., Hoffmann, D., Friedrichs, V., Dorhoi, A., Groschup, M. H., Beer, M. & Mettenleiter, T. C. (2020). Susceptibility of Raccoon Dogs for Experimental SARS-CoV-2 Infection. Emerging Infectious Diseases, 26(12), 2982–2985. https://doi.org/10.3201/eid2612.203733
Gale, P., Stephenson, B., Brouwer, A., Martinez, M., de la Torre, A., Bosch, J., Foley-Fisher, M., Bonilauri, P., Lindström, A., Ulrich, R. G., de Vos, C. J., Scremin, M., Liu, Z., Kelly, L. & Muñoz, M. J. (2012). Impact of climate change on risk of incursion of Crimean-Congo haemorrhagic fever virus in livestock in Europe through migratory birds. Journal of Applied Microbiology, 112(2), 246–257. https://doi.org/10.1111/j.1365-2672.2011.05203.x
Ge, X. Y., Li, J. L., Yang, X. Lou, Chmura, A. A., Zhu, G., Epstein, J. H., Mazet, J. K., Hu, B., Zhang, W., Peng, C., Zhang, Y. J., Luo, C. M., Tan, B., Wang, N., Zhu, Y., Crameri, G., Zhang, S. Y., Wang, L. F., Daszak, P. & Shi, Z. L. (2013). Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature, 503(7477), 535–538. https://doi.org/10.1038/nature12711
Gorbalenya, A. E., Baker, S. C., Baric, R. S., de Groot, R. J., Drosten, C., Gulyaeva, A. A., Haagmans, B. L., Lauber, C., Leontovich, A. M., Neuman, B. W., Penzar, D., Perlman, S., Poon, L. L. M., Samborskiy, D. V, Sidorov, I. A., Sola, I., Ziebuhr, J. & Viruses, C. S. G. of the I. C. on T. of. (2020). The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nature Microbiology, 5(4), 536–544. https://doi.org/10.1038/s41564-020-0695-z
Groseth, A., Feldmann, H. & Strong, J. E. (2007). The ecology of Ebola virus. In Trends in Microbiology (Vol. 15, Issue 9, pp. 408–416). Trends Microbiol. https://doi.org/10.1016/j.tim.2007.08.001
Gryseels, S., De Bruyn, L., Gyselings, R., Bastien Calvignac-Spencer, S., Leendertz, F. H. & Leirs, H. (2020). Risk of Human-to-Wildlife Transmission of SARS-CoV-2. Preprints (www.preprints.org) | https://doi.org/10.20944/preprints202005.0141.v1
Guan, Y., Zheng, B. J., He, Y. Q., Liu, X. L., Zhuang, Z. X., Cheung, C. L., Luo, S. W., Li, P. H., Zhang, L. J., Guan, Y. J., Butt, K. M., Wong, K. L., Chan, K. W., Lim, W., Shortridge, K. F., Yuen, K. Y., Peiris, J. S. M. & Poon, L. L. M. (2003). Isolation and characterization of viruses related to the SARS coronavirus from animals in Southern China. Science, 302(5643), 276–278. https://doi.org/10.1126/science.1087139
Hahn, B. H., Shaw, G. M., De Cock, K. M. & Sharp, P. M. (2000). AIDS as a zoonosis: Scientific and public health implications. In Science (Vol. 287, Issue 5453, pp. 607–614). Science. https://doi.org/10.1126/science.287.5453.607
Halpin, K., Hyatt, A. D., Fogarty, R., Middleton, D., Bingham, J., Epstein, J. H., Rahman, S. A., Hughes, T., Smith, C., Field, H. E. & Daszak, P. (2011). Pteropid bats are confirmed as the reservoir hosts of henipaviruses: A comprehensive experimental study of virus transmission. American Journal of Tropical Medicine and Hygiene, 85(5), 946–951. https://doi.org/10.4269/ajtmh.2011.10-0567
Hammer, A. S., Quaade, M. L., Rasmussen, T. B., Fonager, J., Rasmussen, M., Mundbjerg, K., Lohse, L., Strandbygaard, B., Jørgensen, C. S., Alfaro-Núñez, A., Rosenstierne, M. W., Boklund, A., Halasa, T., Fomsgaard, A., Belsham, G. J. & Bøtner, A. (2021). SARS-CoV-2 Transmission between Mink ( Neovison vison ) and Humans, Denmark . Emerging Infectious Diseases, 27(2). https://doi.org/10.3201/eid2702.203794
Hu, B., Zeng, L. P., Yang, X. Lou, Ge, X. Y., Zhang, W., Li, B., Xie, J. Z., Shen, X. R., Zhang, Y. Z., Wang, N., Luo, D. S., Zheng, X. S., Wang, M. N., Daszak, P., Wang, L. F., Cui, J. & Shi, Z. L. (2017). Discovery of a rich gene pool of bat SARS-related coronaviruses provides new insights into the origin of SARS coronavirus. PLoS Pathogens, 13(11), 1–27. https://doi.org/10.1371/journal.ppat.1006698
IPBES #PandemicsReport Now Available | IPBES. (2020). “Escaping the Era of Pandemics” Retrieved December 8, 2020, from https://ipbes.net/pandemics-marquee
Jameson, L. J., Ramadani, N. & Medlock, J. M. (2012). Possible drivers of Crimean-Congo hemorrhagic fever virus transmission in Kosova. Vector-Borne and Zoonotic Diseases, 12(9), 753–757. https://doi.org/10.1089/vbz.2011.0773
Javelle, E., Lesueur, A., Pommier De Santi, V., De Laval, F., Lefebvre, T., Holweck, G., Durand, G. A., Leparc-Goffart, I., Texier, G. & Simon, F. (2020). The challenging management of Rift Valley Fever in humans: Literature review of the clinical disease and algorithm proposal. In Annals of Clinical Microbiology and Antimicrobials (Vol. 19, Issue 1, p. 4). BioMed Central Ltd. https://doi.org/10.1186/s12941-020-0346-5
Jezek, Z., Szezeniowski, M. Y., Muyembe-Tamfum, J. J., McCormick, J. B. & Heymann, D. L. (1999). Ebola between outbreaks: Intensified Ebola hemorrhagic fever surveillance in the Democratic Republic of the Congo, 1981-1985. Journal of Infectious Diseases, 179(SUPPL. 1). https://doi.org/10.1086/514295
Jones, K. E., Patel, N. G., Levy, M. A., Storeygard, A., Balk, D., Gittleman, J. L. & Daszak, P. (2008). Global trends in emerging infectious diseases. Nature, 451(7181), 990–993. https://doi.org/10.1038/nature06536
Judson, S. D., Fischer, R., Judson, A. & Munster, V. J. (2016). Ecological Contexts of Index Cases and Spillover Events of Different Ebolaviruses. PLOS Pathogens, 12(8), e1005780. https://doi.org/10.1371/journal.ppat.1005780
Keele, B. F., Van Heuverswyn, F., Li, Y., Bailes, E., Takehisa, J., Santiago, M. L., Bibollet-Ruche, F., Chen, Y., Wain, L. V., Liegeois, F., Loul, S., Ngole, E. M., Bienvenue, Y., Delaporte, E., Brookfield, J. F. Y., Sharp, P. M., Shaw, G. M., Peeters, M. & Hahn, B. H. (2006). Chimpanzee reservoirs of pandemic and nonpandemic HIV-1. Science, 313(5786), 523–526. https://doi.org/10.1126/science.1126531
Kelly, T. R., Karesh, W. B., Johnson, C. K., Gilardi, K. V. K., Anthony, S. J., Goldstein, T., Olson, S. H., Machalaba, C., Mazet, J. A. K., Aguirre, A., Aguirre, L., Akongo, M. J., Robles, E. A., Ambu, L., Antonjaya, U., Aguilar, G. A., Barcena, L., Barradas, R., Bogich, T., … Zimmerman, D. (2017). One Health proof of concept: Bringing a transdisciplinary approach to surveillance for zoonotic viruses at the human-wild animal interface. Preventive Veterinary Medicine, 137, 112–118. https://doi.org/10.1016/j.prevetmed.2016.11.023
Kock, R. (2014). Drivers of disease emergence and spread: Is wildlife to blame? Onderstepoort Journal of Veterinary Research, 81(2). https://doi.org/10.4102/ojvr.v81i2.739
Lam, T. T. Y., Jia, N., Zhang, Y. W., Shum, M. H. H., Jiang, J. F., Zhu, H. C., Tong, Y. G., Shi, Y. X., Ni, X. B., Liao, Y. S., Li, W. J., Jiang, B. G., Wei, W., Yuan, T. T., Zheng, K., Cui, X. M., Li, J., Pei, G. Q., Qiang, X., … Cao, W. C. (2020). Identifying SARS-CoV-2-related coronaviruses in Malayan pangolins. Nature, 583(7815), 282–285. https://doi.org/10.1038/s41586-020-2169-0
Lee, J., Hughes, T., Lee, M.-H., Field, H., Rovie-Ryan, J. J., Sitam, F. T., Sipangkui, S., Nathan, S. K. S. S., Ramirez, D., Kumar, S. V., Lasimbang, H., Epstein, J. H. & Daszak, P. (2020). No Evidence of Coronaviruses or Other Potentially Zoonotic Viruses in Sunda pangolins (Manis javanica) Entering the Wildlife Trade via Malaysia. EcoHealth, 17(3), 406–418. https://doi.org/10.1007/s10393-020-01503-x
Leroy, E. M., Kumulungui, B., Pourrut, X., Rouquet, P., Hassanin, A., Yaba, P., Délicat, A., Paweska, J. T., Gonzalez, J. P. & Swanepoel, R. (2005). Fruit bats as reservoirs of Ebola virus. Nature, 438(7068), 575–576. https://doi.org/10.1038/438575a
Lu, R., Zhao, X., Li, J., Niu, P., Yang, B., Wu, H., Wang, W., Song, H., Huang, B., Zhu, N., Bi, Y., Ma, X., Zhan, F., Wang, L., Hu, T., Zhou, H., Hu, Z., Zhou, W., Zhao, L., … Tan, W. (2020). Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. The Lancet, 395(10224), 565–574. https://doi.org/10.1016/S0140-6736(20)30251-8
Majid, Z. & Majid Warsi, S. (2018). NIPAH virus: a new threat to South Asia. In Tropical Doctor (Vol. 48, Issue 4, p. 376). SAGE Publications Ltd. https://doi.org/10.1177/0049475518791327
McAloose, D., Laverack, M., Wang, L., Killian, M. L., Caserta, L. C., Yuan, F., Mitchell, P. K., Queen, K., Mauldin, M. R., Cronk, B. D., Bartlett, S. L., Sykes, J. M., Zec, S., Stokol, T., Ingerman, K., Delaney, M. A., Fredrickson, R., Ivan?i?, M., Jenkins-Moore, M., … Diel, D. G. (2020). From people to panthera: Natural sars-cov-2 infection in tigers and lions at the bronx zoo. MBio, 11(5), 1–13. https://doi.org/10.1128/mBio.02220-20
McCormick, J. B., Webb, P. A., Krebs, J. W., Johnson, K. M. & Smith, E. S. (1987). A Prospective Study of the Epidemiology and Ecology of Lassa Fever. Journal of Infectious Diseases, 155(3), 437–444. https://doi.org/10.1093/infdis/155.3.437
Melin, A., Janiak, M., Marrone, F., Arora, P. & Higham, J. (2020). Comparative ACE2 variation and primate COVID-19 risk. BioRxiv?: The Preprint Server for Biology. https://doi.org/10.1101/2020.04.09.034967
Messenger, A. M., Barnes, A. N. & Gray, G. C. (2014). Reverse zoonotic disease transmission (Zooanthroponosis): A systematic review of seldom-documented human biological threats to animals. PLoS ONE, 9(2). https://doi.org/10.1371/journal.pone.0089055
Mohd, H. A., Al-Tawfiq, J. A. & Memish, Z. A. (2016). Middle East Respiratory Syndrome Coronavirus (MERS-CoV) origin and animal reservoir Susanna Lau. Virology Journal, 13(1), 1–7. https://doi.org/10.1186/s12985-016-0544-0
Molenaar, R. J., Vreman, S., Hakze-van der Honing, R. W., Zwart, R., de Rond, J., Weesendorp, E., Smit, L. A. M., Koopmans, M., Bouwstra, R., Stegeman, A. & van der Poel, W. H. M. (2020). Clinical and Pathological Findings in SARS-CoV-2 Disease Outbreaks in Farmed Mink (Neovison vison). Veterinary Pathology, 57(5), 653–657. https://doi.org/10.1177/0300985820943535
Morse, S. S., Mazet, J. A. K., Woolhouse, M., Parrish, C. R., Carroll, D., Karesh, W. B., Zambrana-Torrelio, C., Lipkin, W. I. & Daszak, P. (2012). Prediction and prevention of the next pandemic zoonosis. In The Lancet (Vol. 380, Issue 9857, pp. 1956–1965). Elsevier. https://doi.org/10.1016/S0140-6736(12)61684-5
Negredo, A., de la Calle-Prieto, F., Palencia-Herrejón, E., Mora-Rillo, M., Astray-Mochales, J., Sánchez-Seco, M. P., Bermejo Lopez, E., Menárguez, J., Fernández-Cruz, A., Sánchez-Artola, B., Keough-Delgado, E., Ramírez de Arellano, E., Lasala, F., Milla, J., Fraile, J. L., Ordobás Gavín, M., Martinez de la Gándara, A., López Perez, L., Diaz-Diaz, D., … Arribas, J. R. (2017). Autochthonous Crimean–Congo Hemorrhagic Fever in Spain. New England Journal of Medicine, 377(2), 154–161. https://doi.org/10.1056/nejmoa1615162
O’Shea, T. J., Cryan, P. M., Cunningham, A. A., Fooks, A. R., Hayman, D. T. S., Luis, A. D., Peel, A. J., Plowright, R. K. & Wood, J. L. N. (2014). Bat flight and zoonotic viruses. Emerging Infectious Diseases, 20(5), 741–745. https://doi.org/10.3201/eid2005.130539
Olival, K. J., Cryan, P. M., Amman, B. R., Baric, R. S., Blehert, D. S., Brook, C. E., Calisher, C. H., Castle, K. T., Coleman, J. T. H., Daszak, P., Epstein, J. H., Field, H., Frick, W. F., Gilbert, A. T., Hayman, D. T. S., Ip, H. S., Karesh, W. B., Johnson, C. K., Kading, R. C., … Wang, L. F. (2020). Possibility for reverse zoonotic transmission of sars-cov-2 to free-ranging wildlife: A case study of bats. In PLoS Pathogens (Vol. 16, Issue 9, p. e1008758). Public Library of Science. https://doi.org/10.1371/journal.ppat.1008758
Oreshkova, N., Molenaar, R. J., Vreman, S., Harders, F., Oude Munnink, B. B., Hakze-van der Honing, R. W., Gerhards, N., Tolsma, P., Bouwstra, R., Sikkema, R. S., Tacken, M. G., de Rooij, M. M., Weesendorp, E., Engelsma, M. Y., Bruschke, C. J., Smit, L. A., Koopmans, M., van der Poel, W. H. & Stegeman, A. (2020). SARS-CoV-2 infection in farmed minks, the Netherlands, April and May 2020. Eurosurveillance, 25(23), 2001005. https://doi.org/10.2807/1560-7917.ES.2020.25.23.2001005
Osterhaus, A. D. M. E., Vanlangendonck, C., Barbeschi, M., Bruschke, C. J. M., Christensen, R., Daszak, P., de Groot, F., Doherty, P., Drury, P., Gmacz, S., Hamilton, K., Hart, J., Katz, R., Longuet, C., McLeay, J., Morelli, G., Schlundt, J., Smith, T., Suri, S., … Wagenaar, J. A. (2020). Make science evolve into a One Health approach to improve health and security: a white paper. One Health Outlook, 2(1). https://doi.org/10.1186/s42522-019-0009-7
Oude Munnink, B. B., Nieuwenhuijse, D. F., Stein, M., O’Toole, Á., Haverkate, M., Mollers, M., Kamga, S. K., Schapendonk, C., Pronk, M., Lexmond, P., van der Linden, A., Bestebroer, T., Chestakova, I., Overmars, R. J., van Nieuwkoop, S., Molenkamp, R., van der Eijk, A. A., GeurtsvanKessel, C., Vennema, H., … Hoebe, C. (2020a). Rapid SARS-CoV-2 whole-genome sequencing and analysis for informed public health decision-making in the Netherlands. Nature Medicine, 26(9), 1405–1410. https://doi.org/10.1038/s41591-020-0997-y
Oude Munnink, B. B., Sikkema, R. S., Nieuwenhuijse, D. F., Molenaar, R. J., Munger, E., Molenkamp, R., van der Spek, A., Tolsma, P., Rietveld, A., Brouwer, M., Bouwmeester-Vincken, N., Harders, F., Hakze-van der Honing, R., Wegdam-Blans, M. C. A., Bouwstra, R. J., GeurtsvanKessel, C., van der Eijk, A. A., Velkers, F. C., Smit, L. A. M., … Koopmans, M. P. G. (2020b). Transmission of SARS-CoV-2 on mink farms between humans and mink and back to humans. Science, eabe5901. https://doi.org/10.1126/science.abe5901
Palomar, A. M., Portillo, A., Santibáñez, P., Mazuelas, D., Arizaga, J., Crespo, A., Gutiérrez, Ó., Cuadrado, J. F. & Oteo, J. A. (2013). Crimean-congo hemorrhagic fever virus in ticks from migratory birds, Morocco. Emerging Infectious Diseases, 19(2), 260–263. https://doi.org/10.3201/eid1902.121193
Patz, J. A., Daszak, P., Tabor, G. M., Aguirre, A. A., Pearl, M., Epstein, J., Wolfe, N. D., Kilpatrick, A. M., Foufopoulos, J., Molyneux, D., Bradley, D. J., Amerasinghe, F. P., Ashford, R. W., Barthelemy, D., Bos, R., Bradley, D. J., Buck, A., Butler, C., Chivian, E. S., … Zakarov, V. (2004). Unhealthy landscapes: Policy recommendations on land use change and infectious disease emergence. Environmental Health Perspectives, 112(10), 1092–1098. https://doi.org/10.1289/ehp.6877
Peeters, M., Gueye, A., Mboup, S., Bibollet-Ruche, F., Ekaza, E., Mulanga, C., Ouedrago, R., Gandji, R., Mpele, P., Dibanga, G., Koumare, B., Saidou, M., Esu-Williams, E., Lombart, J. P., Badombena, W., Luo, N., Vanden Haesevelde, M. & Delaporte, E. (1997). Geographical distribution of HIV-1 group O viruses in Africa. AIDS, 11(4), 493–498. https://doi.org/10.1097/00002030-199704000-00013
Pepin, M., Bouloy, M., Bird, B. H., Kemp, A. & Paweska, J. (2010). Rift Valley fever virus (Bunyaviridae: Phlebovirus): An update on pathogenesis, molecular epidemiology, vectors, diagnostics and prevention. In Veterinary Research (Vol. 41, Issue 6). https://doi.org/10.1051/vetres/2010033
Plowright, R. K., Parrish, C. R., Mccallum, H., Hudson, P. J., Ko, A. I., Graham, A. L. & Lloyd-Smith, J. O. (2017). Pathways to zoonotic spillover HHS Public Access. Nat Rev Microbiol, 15(8), 502–510. https://doi.org/10.1038/nrmicro.2017.45
Rajak, H., Jain, D. K., Singh, A., Sharma, A. K. & Dixit, A. (2015). Ebola virus disease: Past, present and future. Asian Pacific Journal of Tropical Biomedicine, 5(5), 337–343. https://doi.org/10.1016/S2221-1691(15)30365-8
Richmond, J. K. & Baglole, D. J. (2003). Lassa fever: Epidemiology, clinical features, and social consequences. In British Medical Journal (Vol. 327, Issue 7426, pp. 1271–1275). BMJ Publishing Group. https://doi.org/10.1136/bmj.327.7426.1271
Ristanovi?, E. S., Kokoškov, N. S., Crozier, I., Kuhn, J. H. & Gligi?, A. S. (2020). A Forgotten Episode of Marburg Virus Disease: Belgrade, Yugoslavia, 1967. Microbiology and Molecular Biology Reviews, 84(2). https://doi.org/10.1128/mmbr.00095-19
Roberts, A. & Kemp, C. (2001). Ebola and Marburg hemorrhagic fevers. In Journal of the American Academy of Nurse Practitioners (Vol. 13, Issue 7, pp. 291–292). https://doi.org/10.1111/j.1745-7599.2001.tb00037.x
Rockx, B., Kuiken, T., Herfst, S., Bestebroer, T., Lamers, M. M., Munnink, B. B. O., De Meulder, D., Van Amerongen, G., Van Den Brand, J., Okba, N. M. A., Schipper, D., Van Run, P., Leijten, L., Sikkema, R., Verschoor, E., Verstrepen, B., Bogers, W., Langermans, J., Langermans, J., … Haagmans, B. L. (2020). Comparative pathogenesis of COVID-19, MERS, and SARS in a nonhuman primate model. Science, 368(6494), 1012–1015. https://doi.org/10.1126/science.abb7314
Shan, C., Yao, Y.-F., Yang, X.-L., Zhou, Y.-W., Wu, J., Gao, G., Peng, Y., Yang, L., Hu, X., Xiong, J., Jiang, R.-D., Zhang, H.-J., Gao, X.-X., Peng, C., Min, J., Chen, Y., Si, H.-R., Zhou, P., Wang, Y.-Y., … Yuan, Z.-M. (2020). Infection with Novel Coronavirus (SARS-CoV-2) Causes Pneumonia in the Rhesus Macaques. https://doi.org/10.21203/rs.2.25200/v1
Sharp, P. M. & Hahn, B. H. (2011). Origins of HIV and the AIDS pandemic. Cold Spring Harbor Perspectives in Medicine, 1(1). https://doi.org/10.1101/cshperspect.a006841
Shi, J., Wen, Z., Zhong, G., Yang, H., Wang, C., Huang, B., Liu, R., He, X., Shuai, L., Sun, Z., Zhao, Y., Liu, P., Liang, L., Cui, P., Wang, J., Zhang, X., Guan, Y., Tan, W., Wu, G., … Bu, Z. (2020). Susceptibility of ferrets, cats, dogs, and other domesticated animals to SARS–coronavirus 2. Science, 7015(April), eabb7015. https://doi.org/10.1126/science.abb7015
Sia, S. F., Yan, L. M., Chin, A. W. H., Fung, K., Choy, K. T., Wong, A. Y. L., Kaewpreedee, P., Perera, R. A. P. M., Poon, L. L. M., Nicholls, J. M., Peiris, M. & Yen, H. L. (2020). Pathogenesis and transmission of SARS-CoV-2 in golden hamsters. Nature, 583(7818), 834–838. https://doi.org/10.1038/s41586-020-2342-5
Siegert, R., Shu, H. L., Slenczka, W., Peters, D. & Müller, G. (1967). Zur Ätiologie einer unbekannten, von Affen ausgegangenen menschlichen Infektionskrankheit. Deutsche Medizinische Wochenschrift, 92(51), 2341–2343. https://doi.org/10.1055/s-0028-1106144
Singh, R. K., Dhama, K., Chakraborty, S., Tiwari, R., Natesan, S., Khandia, R., Munjal, A., Vora, K. S., Latheef, S. K., Karthik, K., Singh Malik, Y., Singh, R., Chaicumpa, W. & Mourya, D. T. (2019). Nipah virus: epidemiology, pathology, immunobiology and advances in diagnosis, vaccine designing and control strategies–a comprehensive review. In Veterinary Quarterly (Vol. 39, Issue 1, pp. 26–55). Taylor and Francis Ltd. https://doi.org/10.1080/01652176.2019.1580827
Song, H. D., Tu, C. C., Zhang, G. W., Wang, S. Y., Zheng, K., Lei, L. C., Chen, Q. X., Gao, Y. W., Zhou, H. Q., Xiang, H., Zheng, H. J., Chern, S. W. W., Cheng, F., Pan, C. M., Xuan, H., Chen, S. J., Luo, H. M., Zhou, D. H., Liu, Y. F., … Zhao, G. P. (2005). Cross-host evolution of severe acute respiratory syndrome coronavirus in palm civet and human. Proceedings of the National Academy of Sciences of the United States of America, 102(7), 2430–2435. https://doi.org/10.1073/pnas.0409608102
Spengler, J. R., Estrada-Peña, A., Garrison, A. R., Schmaljohn, C., Spiropoulou, C. F., Bergeron, É. & Bente, D. A. (2016). A chronological review of experimental infection studies of the role of wild animals and livestock in the maintenance and transmission of Crimean-Congo hemorrhagic fever virus. In Antiviral Research (Vol. 135, pp. 31–47). Elsevier B.V. https://doi.org/10.1016/j.antiviral.2016.09.013
Ter Meulen, J., Lukashevich, I., Sidibe, K., Inapogui, A., Marx, M., Dorlemann, A., Yansane, M. L., Koulemou, K., Chang-Claude, J. & Schmitz, H. (1996). Hunting of peridomestic rodents and consumption of their meat as possible risk factors for rodent-to-human transmission of lassa virus in the Republic of Guinea. American Journal of Tropical Medicine and Hygiene, 55(6), 661–666. https://doi.org/10.4269/ajtmh.1996.55.661
Tong, C., Javelle, E., Grard, G., Dia, A., Lacrosse, C., Fourié, T., Gravier, P., Watier-Grillot, S., Lancelot, R., Letourneur, F., Comby, F., Grau, M., Cassou, L., Meynard, J. B., Briolant, S., Leparc-Goffart, I. & de Santi, V. P. (2019). Tracking rift valley fever: From Mali to Europe and other countries, 2016. Eurosurveillance, 24(8). https://doi.org/10.2807/1560-7917.ES.2019.24.8.1800213
Towner, J. S., Pourrut, X., Albariño, C. G., Nkogue, C. N., Bird, B. H., Grard, G., Ksiazek, T. G., Gonzalez, J. P., Nichol, S. T. & Leroy, E. M. (2007). Marburg virus infection detected in a common African bat. PLoS ONE, 2(8). https://doi.org/10.1371/journal.pone.0000764
Vijayreddy Vandali, M., Rekha, M. & Biradar, B. (2018). Nipah Virus (Niv) Infection: A Systematic Review JOJ Nurse Health Care. JOJ Nurse Health Care, 8(1). https://doi.org/10.19080/JOJNHC.2018.08.555729
Wang, N., Li, S. Y., Yang, X. Lou, Huang, H. M., Zhang, Y. J., Guo, H., Luo, C. M., Miller, M., Zhu, G., Chmura, A. A., Hagan, E., Zhou, J. H., Zhang, Y. Z., Wang, L. F., Daszak, P. & Shi, Z. L. (2018). Serological Evidence of Bat SARS-Related Coronavirus Infection in Humans, China. Virologica Sinica, 33(1), 104–107. https://doi.org/10.1007/s12250-018-0012-7
WHO | Marburg haemorrhagic fever. (2017). WHO. http://www.who.int/csr/don/archive/disease/marburg_virus_disease/en/
WHO | Lassa fever. (2020a). WHO. http://www.who.int/csr/don/archive/disease/lassa_fever/en/
WHO | Ebola virus disease. (2020b). WHO. https://www.who.int/health-topics/ebola#tab=tab_1
WHO | MERS-CoV. (2020c). WHO. http://www.who.int/csr/don/archive/disease/coronavirus_infections/en/
WHO | Coronavirus Disease (COVID-19) Dashboard | WHO Coronavirus Disease (COVID-19) Dashboard. (2020d). WHO. https://covid19.who.int/
Wiwanitkit, V. (2014). Unprecedented scale Ebola epidemic in Guinea: What we should know. In Asian Pacific Journal of Tropical Biomedicine (Vol. 4, Issue 9, pp. 675–675). Asian Pacific Tropical Biomedicine Press. https://doi.org/10.12980/APJTB.4.201414B138
Woolhouse, M. E. J. & Gowtage-Sequeria, S. (2005). Host range and emerging and reemerging pathogens. Emerging Infectious Diseases, 11(12), 1842–1847. https://doi.org/10.3201/eid1112.050997
Woolsey, C., Borisevich, V., Prasad, A., Agans, K., Deer, D., Dobias, N., Heymann, J., Foster, S., Levine, C., Medina, L., Melody, K., Geisbert, J., Fenton, K., Geisbert, T. & Cross, R. (2020). Establishment of an African green monkey model for COVID-19. BioRxiv?: The Preprint Server for Biology. https://doi.org/10.1101/2020.05.17.100289
Wright, D., Kortekaas, J., Bowden, T. A. & Warimwe, G. M. (2019). Rift valley fever: Biology and epidemiology. In Journal of General Virology (Vol. 100, Issue 8, pp. 1187–1199). Microbiology Society. https://doi.org/10.1099/jgv.0.001296
Wu, A., Peng, Y., Huang, B., Ding, X., Wang, X., Niu, P., Meng, J., Zhu, Z., Zhang, Z., Wang, J., Sheng, J., Quan, L., Xia, Z., Tan, W., Cheng, G. & Jiang, T. (2020). Genome Composition and Divergence of the Novel Coronavirus (2019-nCoV) Originating in China. Cell Host and Microbe, 27(3), 325–328. https://doi.org/10.1016/j.chom.2020.02.001
Xu, R. H., He, J. F., Evans, M. R., Peng, G. W., Field, H. E., Yu, D. W., Lee, C. K., Luo, H. M., Lin, W. S., Lin, P., Li, L. H., Liang, W. J., Lin, J. Y. & Schnur, A. (2004). Epidemiologic clues to SARS origin in China. Emerging Infectious Diseases, 10(6), 1030–1037. https://doi.org/10.3201/eid1006.030852
Yan, R., Zhang, Y., Li, Y., Xia, L., Guo, Y. & Zhou, Q. (2020). Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science, 367(6485), 1444–1448. https://doi.org/10.1126/science.abb2762
Yang, Y., Peng, F., Wang, R., Guan, K., Jiang, T., Xu, G., Sun, J. & Chang, C. (2020). The deadly coronaviruses: The 2003 SARS pandemic and the 2020 novel coronavirus epidemic in China. Journal of Autoimmunity, 109(February), 102434. https://doi.org/10.1016/j.jaut.2020.102434
Younan, M., Bornstein, S. & Gluecks, I. V. (2016). MERS and the dromedary camel trade between Africa and the Middle East. Tropical Animal Health and Production, 48(6), 1277–1282. https://doi.org/10.1007/s11250-016-1089-3
Zhou, P., Yang, X. Lou, Wang, X. G., Hu, B., Zhang, L., Zhang, W., Si, H. R., Zhu, Y., Li, B., Huang, C. L., Chen, H. D., Chen, J., Luo, Y., Guo, H., Jiang, R. Di, Liu, M. Q., Chen, Y., Shen, X. R., Wang, X., … Shi, Z. L. (2020). A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 579(7798), 270–273. https://doi.org/10.1038/s41586-020-2012-7
Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J., Zhao, X., Huang, B., Shi, W., Lu, R., Niu, P., Zhan, F., Ma, X., Wang, D., Xu, W., Wu, G., Gao, G. F. & Tan, W. (2020). A Novel Coronavirus from Patients with Pneumonia in China, 2019. New England Journal of Medicine, 382(8), 727–733. https://doi.org/10.1056/nejmoa2001017

Descargas

Publicado

2021-02-24

Cómo citar

Orozco, M. M. (2021). NUEVOS DESAFÍOS PARA LA SALUD GLOBAL: EMERGENCIA Y REEMERGENCIA DE PATÓGENOS EN ÁREAS DE INTERFAZ. Ciencias De La Salud, 2(1), 1–26. Recuperado a partir de https://unae.edu.py/ojs/index.php/salud/article/view/252