ENERGÍAS RENOVABLES EN AMERICA LATINA Y EL CARIBE PARA LA MITIGACIÓN DEL CAMBIO CLIMÁTICO
DOI:
https://doi.org/10.56067/saetauniversitaria.v11i2.354Palavras-chave:
Energías renovables, Energía solar, Energía eólica, Bioenergía, Cambio climático, América LatinaResumo
In recent decades, climate change has gained interest in the international scientific community due to the constant increase in the concentration of greenhouse gases (mainly CO2) and its consequences in various states in the economic, social, and environmental fields. Simultaneously, world energy demand has been growing hand in hand with economic and demographic development worldwide. In this sense, nations have been choosing to diversify their energy matrixes in order to reduce their dependence on fossil fuels, betting on different renewable energy alternatives. This review aims to describe the current state of the Latin American region in terms of the deployment of installation and use of renewable energy alternatives to carbon sources. Dualities stand out between nations such as Paraguay or Costa Rica which almost entirely consume their energy from renewable sources and others such as Trinidad and Tobago which still depend mainly on non-renewable sources and must invest efforts in energy diversification. Similarly, there is an organized group among Latin American states in favor of renewable energy development called "Renewables in Latin America and the Caribbean (RELAC)".
Downloads
Referências
Acheampong, A. O., Erdiaw-Kwasie, M. O., & Abunyewah, M. (2021). Does energy accessibility improve human development? Evidence from energy-poor regions. Energy Economics, 96, 105165. DOI: https://doi.org/10.1016/j.eneco.2021.105165
Agencia Andaluza de la Energía. (2011). Informe Anual. Retrieved from https://www.agenciaandaluzadelaenergia.es/sites/default/files/Documentos/recursos_geotermicos_de_andalucia_0.pdf
Angelini, L. G., Ceccarini, L., o Di Nasso, N. N., & Bonari, E. (2009). Comparison of Arundo donax L. and Miscanthus x giganteus in a long-term field experiment in Central Italy: Analysis of productive characteristics and energy balance. Biomass and Bioenergy, 33(4), 635-643. DOI: https://doi.org/10.1016/j.biombioe.2008.10.005
Aruga, K., Islam, M. M., & Jannat, A. (2021). Does Staying at Home during the COVID-19 Pandemic Help Reduce CO2 Emissions? Sustainability, 13(15), 8534. DOI: https://doi.org/10.3390/su13158534
Barbier, E. (2002). Geothermal energy technology and current status: an overview. Renewable and sustainable energy reviews, 6(1-2), 3-65. DOI: https://doi.org/10.1016/S1364-0321(02)00002-3
Bilgili, M., Yasar, A., & Simsek, E. (2011). Offshore wind power development in Europe and its comparison with onshore counterpart. Renewable and Sustainable Energy Reviews, 15(2), 905-915. DOI: https://doi.org/10.1016/j.rser.2010.11.006
Chikaire, J., Nnadi, F., Nwakwasi, R., Anyoha, N., Aja, O., Onoh, P., & Nwachukwu, C. (2010). Solar energy applications for agriculture. Journal of Agricultural and Veterinary Sciences, 2, 58-62.
Climate Center. (2021). Country Level Climate Factsheet of Ukraine. Retrieved from
Convención Marco sobre el Cambio Climático. (2015). Acuerdo de París sobre el Cambio Climático. Retrieved from https://unfccc.int/resource/docs/2015/cop21/spa/10a01s.pdf DOI: https://doi.org/10.5377/cultura.v21i67.2496
Dickson, M. H., & Fanelli, M. (2013). Geothermal energy: utilization and technology: Routledge. DOI: https://doi.org/10.4324/9781315065786
Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Seyboth, K., Kadner, S., Zwickel, T., . . . von Stechow, C. (2011). Renewable energy sources and climate change mitigation: Special report of the intergovernmental panel on climate change: Cambridge University Press. DOI: https://doi.org/10.1017/CBO9781139151153
García, J. O., Gago, E. J., Bayo, J. A., & Montes, G. M. (2007). The use of solar energy in the buildings construction sector in Spain. Renewable and Sustainable Energy Reviews, 11(9), 2166-2178. DOI: https://doi.org/10.1016/j.rser.2006.03.010
Hernández, Q., Manzano, F., & Zapata, A. (2010). The wind power of Mexico. Renewable and Sustainable Energy Reviews, 14(9), 2830-2840. DOI: https://doi.org/10.1016/j.rser.2010.07.019
Höök, M., & Tang, X. (2013). Depletion of fossil fuels and anthropogenic climate change—A review. Energy policy, 52, 797-809. DOI: https://doi.org/10.1016/j.enpol.2012.10.046
Hub de Energia. America Latina y el Caribe. (2018). https://hubenergia.org/es/indicators/comercio-de-electricidad-regional#
IPCC. (2007). Intergovernmental Panel on Climate Change: Fourth Assessment Report. Retrieved from https://www.ipcc.ch/assessment-report/ar4/
IRENA. (2019). El Futuro de la Energía Solar Fotovoltaica. Retrieved from https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2019/Nov/IRENA_Future_of_Solar_PV_summary_2019_ES.pdf?la=en&hash=DE82F7DC53286F720D8E534A2142C2B8D510FB0B
Kannan, N., & Vakeesan, D. (2016). Solar energy for future world:-A review. Renewable and Sustainable Energy Reviews, 62, 1092-1105. DOI: https://doi.org/10.1016/j.rser.2016.05.022
Kaygusuz, K. (2002). Sustainable development of hydroelectric power. Energy sources, 24(9), 803-815. DOI: https://doi.org/10.1080/00908310290086725
Koengkan, M., Poveda, Y. E., & Fuinhas, J. A. (2020). Globalisation as a motor of renewable energy development in Latin America countries. GeoJournal, 85(6), 1591-1602. DOI: https://doi.org/10.1007/s10708-019-10042-0
Levy, A., Tejada, J. & Di Chiara, L. (2019). Integracion electrica regional: Oportunidades y retos que enfrentan los paises de America Latina y el Caribe (monografia del BID).
Lewandowski, I., Scurlock, J. M., Lindvall, E., & Christou, M. (2003). The development and current status of perennial rhizomatous grasses as energy crops in the US and Europe. Biomass and Bioenergy, 25(4), 335-361. DOI: https://doi.org/10.1016/S0961-9534(03)00030-8
Manzella, A., Bonciani, R., Allansdottir, A., Botteghi, S., Donato, A., Giamberini, S., . . . Scrocca, D. (2018). Environmental and social aspects of geothermal energy in Italy. Geothermics, 72, 232-248. DOI: https://doi.org/10.1016/j.geothermics.2017.11.015
Maradin, D. (2021). Advantages and disadvantages of renewable energy sources utilization. 670216917. DOI: https://doi.org/10.32479/ijeep.11027
Margalef, R. (1980). La biosfera entre la termodinámica y el juego.
Marín, C. E., & Marín, R. G. (2010). Agua y energía: producción hidroeléctrica en España. Investigaciones Geográficas(51), 107-129. DOI: https://doi.org/10.14198/INGEO2010.51.05
Mbah, R. E., & Wasum, D. F. (2022). Russian-Ukraine 2022 War: A review of the economic impact of Russian-Ukraine crisis on the USA, UK, Canada, and Europe. Advances in Social Sciences Research Journal, 9(3), 144-153. DOI: https://doi.org/10.14738/assrj.93.12005
Offermann, R., Seidenberger, T., Thrän, D., Kaltschmitt, M., Zinoviev, S., & Miertus, S. (2011). Assessment of global bioenergy potentials. Mitigation and adaptation strategies for global change, 16(1), 103-115. DOI: https://doi.org/10.1007/s11027-010-9247-9
OLADE. (2021a). Leyes de Eficiencia Energética en Latinoamérica y el Caribe. Retrieved from
OLADE. (2021b). Panorama Energético de América Latina y el Caribe. In: Organización Latinoamericana de Energía (OLADE) Ecuador.
Osorio, J. (2008). Energía hidroeléctrica. 139.
Osorio, J. (2016). Energía hidroeléctrica: Serie Energías renovables. 139.
Oxilia, V.E. (2009). Raízes Socieconˆomicas da Integraç ?ao Energ ?etica na Am ?erica do Sul: an alise dos projetos Itaipu Binacional Gasbol e Gasander PhD thesis PPGE/USP, Sao Paulo.
https://teses.usp.br/teses/disponiveis/86/86131/tde-16082010-184420/pt-br.php
Pandey, A., Kumar, R. R., Kalidasan, B., Laghari, I. A., Samykano, M., Kothari, R., . . . Tyagi, V. (2021). Utilization of solar energy for wastewater treatment: Challenges and progressive research trends. Journal of Environmental Management, 297, 113300. DOI: https://doi.org/10.1016/j.jenvman.2021.113300
Paredes, J. R. (2017). La Red del Futuro: Desarrollo de una red eléctrica limpia y sostenible para América Latina: Banco Interamericano de Desarrollo. DOI: https://doi.org/10.18235/0000937
Pearce, W., Holmberg, K., Hellsten, I., & Nerlich, B. (2014). Climate change on Twitter: Topics, communities and conversations about the 2013 IPCC Working Group 1 report. PloS one, 9(4), e94785. DOI: https://doi.org/10.1371/journal.pone.0094785
Plá, J., Perez, M., & Durán, J. C. (2016). Energía solar fotovoltaica. Energia solar, 2-38.
Rawtani, D., Gupta, G., Khatri, N., Rao, P. K., & Hussain, C. M. (2022). Environmental damages due to war in Ukraine: A perspective. Science of the Total Environment, 850, 157932. DOI: https://doi.org/10.1016/j.scitotenv.2022.157932
Santos, T. (2021). Regional energy security goes South: Examining energy integration in South America . Energy Research & Social Science, (), –. doi:10.1016/j.erss.2021.102050 DOI: https://doi.org/10.1016/j.erss.2021.102050
Sieminski, A. (2014). International energy outlook. Energy information administration (EIA), 18, 2.
Sikorsky, E., Barron, E., & Hugh, B. (2022). Climate, Ecological Security and the Ukraine Crisis: Four Issues to Consider. Retrieved from
Silva, N., Fuinhas, J. A., & Koengkan, M. (2021). Assessing the advancement of new renewable energy sources in Latin American and Caribbean countries. Energy, 237, 121611. DOI: https://doi.org/10.1016/j.energy.2021.121611
The European Parliament. (2018). Directive (EU) 2018/2001 of the European Parliament and of the Council of 11 December 2018 on the promotion of the use of energy from renewable sources. Retrieved from
Viviescas, C., Lima, L., Diuana, F. A., Vasquez, E., Ludovique, C., Silva, G. N., . . . Lucena, A. F. (2019). Contribution of Variable Renewable Energy to increase energy security in Latin America: Complementarity and climate change impacts on wind and solar resources. Renewable and sustainable energy reviews, 113, 109232. DOI: https://doi.org/10.1016/j.rser.2019.06.039
Washburn, C., & Pablo-Romero, M. (2019). Measures to promote renewable energies for electricity generation in Latin American countries. Energy policy, 128, 212-222. DOI: https://doi.org/10.1016/j.enpol.2018.12.059
Zanoletti, A., Cornelio, A., & Bontempi, E. (2021). A post-pandemic sustainable scenario: What actions can be pursued to increase the raw materials availability? Environmental Research, 202, 111681. DOI: https://doi.org/10.1016/j.envres.2021.111681
Zidanšek, A., Blinc, R., Jegli?, A., Kabashi, S., Bekteshi, S., & Šlaus, I. (2009). Climate changes, biofuels and the sustainable future. international journal of hydrogen energy, 34(16), 6980-6983. DOI: https://doi.org/10.1016/j.ijhydene.2008.11.004
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2023 La Saeta Universitaria Académica y de Investigación
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Este obra está bajo una licencia de Creative Commons Reconocimiento 4.0 Internacional.
Los autores que publican en esta revista están de acuerdo con los siguientes términos:
- Los autores conservan los derechos de autor y garantizan a la revista el derecho de ser la primera publicación del trabajo al igual que licenciado bajo una Creative Commons Attribution License que permite a otros compartir el trabajo con un reconocimiento de la autoría del trabajo y la publicación inicial en esta revista.
- Los autores pueden establecer por separado acuerdos adicionales para la distribución no exclusiva de la versión de la obra publicada en la revista (por ejemplo, situarlo en un repositorio institucional o publicarlo en un libro), con un reconocimiento de su publicación inicial en esta revista.